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FOREWORD

The work reported herein was done at the request of the Army Missile
Command (AMC), Redstone Arsenal, Alabama, under Program Area 921C,

The results of the test were obtained by ARO, Inc. (a subsidiary of
Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold
Engineering Development Center (AEDC), Air Force Stystems Command
(AFSC), Arnold Air Force Station, Tennessee, under Contract F40600-
69-C-0001. The test was conducted from October 30 through December 18,
1968, under ARO Project No. PA1943, and the manuscript was submitted
for publication on February 6, 1969,

Information in this report is embargoed under the Department of

ent of State

gxport llcense

This technical report has been reviewed and is approved.

Richard W. Bradley Roy R. Croy, Jr.
Lt Colonel, USAF Colonel, USAF
AF Representative, PWT Director of Test

Directorate of Test
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ABSTRACT

A test was conducted in the Aerodynamic Wind Tunnel, Transonic
(1T), to determine the effects of various afterbodies on the aerodynamic
characteristics of a generalized missile. Two similar models were
tested with various afterbodies consisting of flared, -cylindrical, finned
cylindrical, and finned flared afterbodies. A primary model was used
to evaluate the static longitudinal stability of the complete model, and
a similar model with a metric afterbody was used to evaluate the con-
tribution of the afterbody to the static longitudinal stability of the model.
Tests were conducted at free-stream Mach numbers from 0.7 to 1,5 for
an angle-of-attack range from -4 to 6 deg.
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NOMENCLATURE

Pitching-moment coefficient about the nose, My,/q,SD
Normal -force coefficient, . FN/qu

Diameter of model, 9.17 x 10-2 ft

Normal force, positive up, 1b

Pitching moment about the nose, positive nose up, ft/1b
Free-stream Mach number

Free-stream dynamic pressure, psfa

Reynolds number, per foot

Cross-sectional area of basic model (reference area),
6. 604 x 10-3 ft2

Model angle of attack, positive nose up, deg

CONFIGURATION NOTATION

Cylindrical afterbody (see Fig. 5)
Flared afterbody (see Fig. 5)
Forebody

Canard (see Fig. 3a)

Fin (see Fig. 3b)

Denotes configuration variable

vii
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SECTION |
INTRODUCTION

This report presents the results of wind tunnel tests which were
made to determine the overall static stability of missiles with various
afterbodies and to determine the contribution of the afterbody configura-
tions to this stability. Force data were obtained on two similar models:
one model was constructed so that only a small portion of its afterbody
was attached to an internal strain-gage balance to measure afterbody
forces and moments, and the other model had an internal strain-gage
balance to measure total model forces and moments. Tests were made
over the Mach range of 0.7 to 1, 5 for an angle-of-attack range of -4 to
6 deg.

SECTION Il
APPARATUS

2.1 WIND TUNNEL

The Aerodynamic Wind Tunnel, Transonic {(1T), is an open-circuit,
continuous flow wind tunnel capable of operation over a Mach number
range from 0.50 to 1. 50. The test section is 12 in. square and 37. 5 in.
long and has four perforated walls. ‘

A detailed description of the tunnel, its equipment, and calibration
may be found in Refs. 1 and 2. Details of the test section wall configura-
tion and location of the model in the tunnel are shown in Fig. 1. Typical
model installations in the tunnel are shown in Fig, 2.

2.2 TEST ARTICLE

Two similar models were tested and will be referred to hereafter as
primary and floated-afterbody models. The primary model was instru-
mented to measure overall or complete model forces and moments. The
floated-afterbody model was instrumented to measure only the forces and
moments on the afterbody in the presence of the forebody. Interchangeable
canards and fins were provided so that rapid configuration changes could
be made. Details of the canards and fins are presented in Fig. 3. A
0.20-in, band of No. 80 transition grit was located 1. 00 in, aft of the model
nose throughout the test.
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2.2.1 Primary Model

The primary model consisted of an ogive-cylinder forebody and a
flared or cylindrical afterbody. The model was 13.20 in. in length.
The primary model was attached to a six-component balance which
measured the total model forces and moments. Interchangeable flared
and cylindrical afterbodies were provided to which fins could be attached.
Primary model and flared- and cylindrical -afterbody details are pre-
sented in Figs. 4 and 5.

2.2.2 Floated-Afterbody Model

The floated-afterbody model consisted of an ogive-cylinder model
that was 13. 20 in., in length with a base diameter of 1. 10 in, The
fuselage section of the model consisted of two parts: the ogive-cylinder
forebody to which the canards were attached and a cylindrical afterbody
to which the fins were attached. The afterbody was connected to a six-
component, internal strain-gage balance which measured forces and
moments on the afterbody and fins.

Floated-afterbody model details are presented in Fig. 6.

Schematics of various configurations tested are shown in Fig. 7.

2.3 INSTRUMENTATION

An internally-mounted, six-component, strain-gage balance was used
to measure either model or afterbody forces and moments. Outputs from
the balance were digitized and code punched on paper tape for off-line
data reduction by a Raytheon 520 computer,

SECTION 111
TEST DESCRIPTION

3.1 PROCEDURE

Data were obtained while holding Mach number constant and varying
angle of attack. The tunnel stagnation pressure ranged from 2750 to
2900 psf, and the total temperature varied from 160 to 220°F, The
Reynolds number variation is presented in Fig, 8.
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3.2 DATA REDUCTION

The force and moment data were reduced to coefficient form in the
body axis system. Pitching and yawing moments were referenced to the
model nose. All force and moment coefficients are based on model diam-
eter and cross-sectional area, Although axial and side forces and yawing
moments were measured, they are not pertinent for analysis of the model
stability in pitch at zero sideslip and consequently are not presented.

3.3 PRECISION OF MEASUREMENTS

An estimate of the accuracy of measurements is presented in the
following table:
Primary Model
M, +Cp +CN
M<1 0.003 ~ 0.016 0.010
M>1 0.008 0.008 0.006

Floated Afterbody Model
M, +Cm tCN
M<1 0.003 0.011 0.005
M>1 0.008 0. 005 0.003

SECTION IV
RESULTS AND DISCUSSION

The results of an experimental investigation to determine the effects
of various afterbodies on the static-stability characteristics of missiles
in the transonic flow regime are presented in two sections. The first
section presents the effects of flared and finned afterbodies on the static-
longitudinal stability characteristics of the primary model. The second
section presents comparisons of the static-longitudinal stability char-
acteristics of the primary and the floated-afterbody models.

4.1 STATIC-STABILITY CHARACTERISTICS OF THE PRIMARY MODEL

The static longitudinal stability characteristics of the primary
model can be interpreted from the slope of the pitching-moment versus
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normal-force coefficient plots. For the flared-afterbody models, the
test results at supersonic Mach numbers only were of interest and are
presented.

The static-stability characteristics of the primary model with
various flared afterbodies, Fig, 9, show that the addition of the flared
afterbody improves the static-longitudinal stability., Varying the after-
body flare angle, for a constant diameter base, produced negligible
effect on the static longitudinal stability of the primary model. As shown
in Fig. 10, increasing the base diameter of the flared afterbody increases
the static longitudinal stability as would be expected.

The effect of the fins and canards on the static stability of the primary
model with flared afterbodies was investigated for several afterbody flare
angles and base diameters. The trends observed from these tests were
similar for all the flared-afterbody configurations tested and, therefore,
only the data for the flared-afterbody configuration Ay ; are presented to
show the effect of fins and canards on the longitudinal stability.

As shown in Fig. 11, the addition of fins to the flared afterbody
resulted in an increase in the longitudinal stability. Increasing the fin
span also resulted in an increase in the longitudinal stability; however,
since the fin chord was held constant, the increase in stability resulted
primarily from the increase in lift as a result of the larger fin area
and increased aspect ratio. As shown in Fig. 12, the addition of canards
(see Fig. 4) to the primary model with a flared afterbody resulted in an
increase in the longitudinal stability. The center of pressure of the
canards is aft of that for the primary model with a flared afterbody. In-
creasing the canard span also resulted in an increase in the longitudinal
stability.

Presented in Fig. 13 are the static longitudinal stability character-
istics of the primary model with canards and finned flared afterbody.
The addition of canards to the primary model with a finned flared after-
body resulted in a decrease in stability, and increasing the canard span
resulted in a further decrease in the stability.

As shown in Fig, 14, increasing the fin span of the primary model
with canards and a finned flared afterbody increases the longitudinal
stability. Presented in Fig. 15 are the static longitudinal -stability
characteristics of build up of the primary model. The trends are as
would be expected for the model build up and the contributions of the
various components can be determined from the data.
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4.2 COMPARISON OF FLOATED-AFTERBODY MODEL AND PRIMARY MODEL

The primary model and the floated-afterbody model were tested from
Mach numbers of 0, 7 to 1, 5 and results for only selected Mach numbers
are presented.

Static longitudinal -stability characteristics of the primary model
with fins and the finned floated afterbody are presented in Figs. 16 and
17. Increasing the fin span increased the magnitude of the pitching-
moment and normal-force coefficient. Increasing the fin span had little
or no effect on the center-of-pressure location of the floated afterbody.

Static longitudinal-stability characteristics of the primary model
with canards and fins and the finned floated afterbody with canards are
presented in Figs. 18 and 19, As shown in Fig. 19, the addition of
canards ahead of the finned floated afterbody resulted in negligible
changes in the longitudinal stability of the finned floated afterbody. The
destabilizing effect of the forebody can readily be seen in Fig. 19 by
comparison of primary-model and floated-afterbody data.

SECTION V
CONCLUSIONS

The results of an investigation of the effects of various afterbodies
on the aerodynamic characteristics of a general missile configuration
at Mach numbers from 0.7 to 1.5 for angles of attack from -4 to 6 deg
produced the following conclusions:

1, Flared afterbodies improved the static longitudinal stability
of the primary model.

2. Increasing the base diameter of the flared afterbodies
increased the static longitudinal stability of the primary
model.

3. Increasing the canard span decreased the static longitudinal
stability of the finned floated afterbody.

REFERENCES
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